
Neural Networks

Recurrent Neural Language Models



Motivation

• Goal: Calculate p(wn|h) where h is the preceding n − 1 words

• Problem: The larger n gets, there are many sequences of n
words that never occur in the training data

• Previous Solution: Use a feed-forward NN to calculate p(wn|h)

• New Solution: Use a recurrent NN to calculate p(wn|h)



Representing words

• Represent each word as a one-hot vector of size n,
where n is the number of words in the vocabulary

• Let e be the number of nodes in the embedding layer

• The weights between the input layer and the embedding layer
are stored in embedding matrix E

• One dimension of embedding matrix E is size n,
the other dimension is size e

• Each embedding is a vector of size e



Recurrence

• Assume we have an extra vector hi−1 of size q

• Connect the embedding layer to the hidden layer
These weights are stored in matrix H.
Multiplying the current word embedding vector times H
results in a new vector of size q.

• Connect the extra vector to the hidden layer
These weights are stored in matrix V.
Multiplying the extra vector hi−1 times V results in a new
vector of size q.

• Connect a set of bias weights b to the hidden layer. This
vector is also of size q.

• Add these three vectors together.
The result is new hidden state hi



Calculating LM probability

• Goal: Calculate p(wn|h) where h is the preceding n − 1 words

• Mechanism: Use a recurrent neural network

• Input: For each word in h, the input layer of the NN will
contain the one-hot vector for that word and the previous
hidden layer.

• Output: Output layer will represent p(wn|h)


