
Neural Networks

Feed-forward Language Models



Motivation

• Goal: Calculate p(wn|h) where h is the preceding n − 1 words

• Problem: The larger n gets, there are many sequences of n
words that never occur in the training data

• Traditional Solution: Use backoff / smoothing techniques with
n-gram language models

• New Solution: Use a feed-forward NN to calculate p(wn|h)



Representing words

• Goal: Represent each word effectively for use in the LM

• Traditional Solution: Represent each word as an integer

• Problem: Traditional solution doesn’t work well with NNs

• New Solution: Represent each word as a one-hot vector



Representing words

• Goal: Similar words should have similar representations

• Problem: One-hot vectors don’t have this property



Representing words

• Goal: Learn a better word representation such that similar
words have similar representations

• Solution: Add an intermediate layer with weights (but without
an activation function)

• Result: The vectors calculated by this intermediate layer have
the desired property.



Representing words

• Terminology: These learned vectors representing words are
called word embeddings.

• Interpretation: Each word vector can be considered a point in
high-dimensional space.

• Result: Words that occur in similar contexts will be
represented by points that are relatively near each other in
this high-dimensional space.



Calculating LM probability

• Goal: Calculate p(wn|h) where h is the preceding n − 1 words

• Mechanism: Use a feed-forward neural network

• Input: For each word in h, the input layer of the NN will
contain the one-hot vector for that word.

• Output: Output layer will represent p(wn|h)


